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INTROD1JC”1" 10N

The analysis and design of three-axis attitude control systems for spacecraft presents a challenging
problem due to the nonlinear nature of their dynamics, Even in circumstances where linear
approximations are valid, the use of pulsc-operated (on-off) thrusters for actuation results in control
systems that arc inherently nonlinear. Onc of the earliest and most widely used design approachesin this
case is to assume that the equations of motion arc uncoupled, a reasonable approximation for small
rotation rates, and employ phase-plane analysis techniques to establish empirical switching curves’ or
to develop control laws that modulate thruster pulse width or frequency to obtain a quasi-proportional
response. “Phase-plane techniques also permit an approximate assessment of limit cycle behavior and
the effects of disturbance torques and sensor noise.’* This approach has been used to develop the
attitude control systems of space vehicles as diverse as the Apollo spacecraft,™ ¢ the Viking Mars lander,’
and the Space Shuttle® Sophisticated computer simulations were developed and used extensively in the
design of these vehicles, to validate the approximations employed

in missions requiring slewing over large angles, Euler’s rotation theorem, which specifics that any
atitude change of arigid body can bc accomplished by a rotation about an axis fixed with respect to
both the vchicle and inertial space, provides a useful and efficient basis for performing these maneuvers,
The dynamical coupling inherent in this approach has previously been dealt with in several different
ways, such as slewing at small rotation rates to minimize coupling effects,? open-loop implementation
of a precomputed angular acceleration profile,” and the usc of fecdback lincarization to transform the
original nonlinear systcm into an equivalent linear systcm, to which linear control theory can be
applicd, “14 in the feedback lincarization schemes discussed in the literature, the control law obtained
is a continuously time-vatying function. To mechanize this type of control law using pulse-operated
thrusters, a second design problem must be solved, that of developing a firing logic which implements

the desired torque commands with acceptable accuracy.




in this paper ancw pulse-~vidth pulse-frequency modulation scheme is developed for pointing and

tracking applications, using a modified Euler rotation technique to align the spacecraft with a
commanded attitude or attitude profile. This scheme is designed to cause the complete closed-loop
system, not just the torque profile produced by the thrusters, to approximate a specified linear system.
The important question of robustness is addressed directly: given upper bounds on the sources of
modeling error (thrust level variations, center of mass and moment of inertia calibration errors, attitude
sensing errors, etc.), design specifications can be established such that the desired performance is
ensured in the presence of these error sources, This approach is derived from arobust control technique
based on Lyapunov stability theory originated by Corless and Leihnann,”16 which was also used in
previous work by the authors addressing guidance applications."” Similar techniques, such as sliding
mode control, arc described by Utkin'* and Slotinc and L.i’Unlike previous approaches based on
Lyapunov theory,’1-'4 this new approach provides a comprehensive evaluation of robustness properties,
and allows for analytical characterization of transient error dynamics, limit cycle dcadband, and the
effects of attitude and rate estimation errors,

Some spacecraft are equipped with multiple thrusters configured such that two or even three
discrete torque levels can be applied to one or more body axes (the Space Shuttle is one example), In
addition, the attitude control function on most modern spat.ccrafl is performed by an autopilot
implemented as a sampled data system, Using the pulse-modulation scheme outlined above, an autopilot
suitable for usc in digital computers is developed which is equally applicable to thruster configurations
providing single or multiple torque levels. Inputs to the autopilot can take the form of a commanded
attitude or a commanded attitude and rate profile. The proposed autopilot can also accommodate
spacecraft with time-varying inertia properties, It is shown that the effect of sampling rate on
performance can be assessed within the same analytical framework used to evaluate robustness and

performance propertics.




PROBI.EMDEFI NITION

The equations describing the rotational motion of arigid body arc well documented in texts such
as those by Hughes? and Wertz.?' These equat ions can be subdivided into two sets, the dynamical
equations relating the rate of change of angular momentum to the applied torque, and a set of kinematic
equations that relate some parametcrization of the attitude to the angular velocity of the body. For
spacecrafl equipped with mass expulsion devices such as thrusters, the moments of inertia of the vehicle
will be time-varying in addition to the angular momentum vector.

Designating the inertia tensor as J, the angular velocity vector as w, and the applied torque vector

as m, the dynamical equations of arigid spacecraft expressed in a body-fixed frame arc as follows:

N 3
Jo = m- Jo - @xJw - Zm,)_j I;.wj (1)
i=1 J=1
in Eq. (1), r'is the propellant mass flow rate of thei ‘i’ thruster ( 72,> 0 by convention), /, isthe

perpendicular distance between ‘thehruster and the /™ body reference axis, and w, is the component
of the vector w along the j " body reference axis. The terms in this equation duc to the rate of change
of inertia and propellant expulsion arc usually small compared with the other terms, but can be

significant during large propulsive maneuvers, The applied torque vector, m, is
N,
m = Y 1 xf, 2
-1

Inkiq. (2), the vector 1, represents the position of the i ™ thruster relative to the center of mass of the
spacecrafl, and f,is the thrust vector of the i ™ thruster.

The thrust profile of a representative thruster firing is shown in Fig. 1. As suggested by this
illustration, some thrusters can exhibit a noticeable departure from an ideal square wave profile. The

ignition and termination commands arc each followed by a delay duc to the electrical and mechanical




operation of the propellant valves, and a thrust buildup or decay period, respectively. Typica values for

these delay times and buildup and decay periods range from just afew milliseconds to several hundred
milliseconds, depending upon the siz¢ and type of thruster. The steady-state thrust level also varies
roughly 1 to 10 percent between successive firings, depending upon the firing period and type of
thruster, with the greatest variation occurring when using very short or very long pulses,

Severa different parameterizations of the spacecrafl attitude can be used An Euler symmetric
paramcier, Or quaternion, representation is onc of the most useful for attitude control systems that must
operate over awide angular range,””"“ and willbe employed herein. Other representations are described
in available texts.” 21 The four-parameter attitude quaternion, which consists of a three-clecment vector

part and ascalar part, is specified as follows:

q - (sin-?l,cos%) 3)

inEq. (3), A isaunit vector about which a rotation through the angle ¢ will move the designated
spacecraft body-fixed coordinate frame from a nonrotating reference frame into its current orientation.

The evolution of the quaternion is governed by the following differential equation:
g = %Ry (4)
where

0 W; - W, W
(0] w, W,

, - Wy 0 wy

"®, ~w, ~w, 0

inkKq. (5), the quantities w,, w,, and w, arc the components of the spacecraft angular velocity vector

expressed in the designated body-fixed frame, i.c., o =[w, w, ;)" Equation (4) makes usc of a column




veetor represcntation of the quaternion, g, such that ¢ = [g,, ¢,, 93, 94", where the first three clements
(91> 92> 95) constitute the vector part of the quaternion, and the fourth element (94) is the scalar part.
A quaternion is aconvenient representation for three-axis reorientation maneuvers, in which the
commanded attitude is specified as a quatcmion, designated g,, and for tracking applications, in which
the commanded attitude profile is expressed as a time history, ¢. (1) and an associated ;atc profile, w_ ().
The error quaternion, designated Aq, representing a unique rotation axis and angle nceded to rotate the

spacecrafl from its current attitude, specified by g, into alignment with the commanded attitude g,, can

be computed using quaternion multiplication:

Aq -qlg, (6)

The inverse quaternion, ", represents a rotation opposite that associated with the quatcmion g, and

is defined as follows;

q'* :('sin-(gl,cos%—») 7)

The resulting error quaternion can be written as

Aq = (sinézE e, ws%‘e ) (8)

The unit vector c in Eq. (8) represents the axis about which arotation of angle A¢ will bring the vehicle
into alignment with the commanded attitude or point along an attitude profile. For attitude control and
stabilization, a feedback logic specifying the commanded torque, designated m,, in the form m, = m(Aq,
Ace), where Aw = w- UC, is sought that is compatible with the restrictions imposed by using pulsc-

opcet ated thrusters, yet still achieves aceeptable performance.
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PULSE-MODULATION CONTROI, THEORY

The proposed pulse-modulation technique consists of equations defining the commanded torque
and thethruster firing logic. It isintended for spacecraft with thruster configurations that can apply
torque about each axis of a designated body-fixed frame; the torques produced by the thrusters arc not
required to be mutually orthogonal, although this is often the case in practice. A general form for two
different types of pulse-mode controllers is presented, one that contains no model parameters and the
other containing feedback linearization and feedforward terms, analogous to the continuous-time control
laws presented by Wen and Kreutz-Delgado'® and Weiss' In the development given below, all of the
quantities discussed can be time-varying unless specific restrictions are stated to the contrary.
Commanded Torque Formulation

A general form for the commanded torque vector, m,, that encompasses both the mode]-indcpendent

and model-dcpendent cases is as follows:

m_ - 6(AD,AQ) + K (3, ,1,0,0 )n[(1/0)d(AD, A0)] + ¢ (3,7 ,,1,0,6,) (9)

whet €

AD = A¢e (10)

The first two terms of Eq, (9) arc intended to null attitude and rate tracking errors, while the third term
represents any desired model compensation terms, designed to cancel nonlinear elements of the
dynamical equations, and feedforward terms to aid in following a commanded attitude and rate profile.
The vectors A®, Aw, and w are denoted with “hat” symbols to indicate that in actual applications only
estimates of these parameters, derived from sensor data onboard the spacecrafl, arc used in the
computations, in a similar vein, the quantities J, »,, and li arc denoted with overbar symbols to show

that inexact estimates of these paramelers arc also used, the difference being that in actual practice these




guantities arc often not estimated from sensor data (notable exceptions exist, such as adaptive
controllers which attempt to estimate J during their opcration'*); a priori estimates or values computed
from some nominal model arc used instead. The estimated attitude error angle and rotation axis

appearing in Eq. (10) arc obtained from an estimate of the quaternion Aq defined in Eq. (8):

Ap = 2c0s ' AG, (12)
& = (1-AG (MG, Ad, AG,) (12)

InEq. ( 12), the vector c is defined such that the rotation about this axis required to bring the spacecraft

into alignment with thecommanded attitude is always positive in a right-handed sense, thus the rotation

angle Agis> 0.

The vector functions i and ¢ appearing in Eq. (9) consist of proportiona and derivative feedback

terms with the following form:

i - K,Ad - K, A0 (13)

¢ = kAD -k AG (14)

Asin Eq. (9), u and v arc denoted with hat symbols in Egs. (13) and (14), signifying that these
quantities are determined from cstimates of AQ and Aw, rather than their true values, when computing
the commandecd torque. In Eq. (13), K,. rind K;, arc constant 3 x 3 gain matrices, whereas k,, and &, in
Eq (14) arc positive, constant scalars, The matrices K;. and K, are symmetric and positive definite, and

must satisfy the following relationships with ;. and £,,:



IK,A®|/0(3) > k| AD | (15)

IK,Aw|/0(J) > k,lAw| (16)

The double linesinEgs,(15)and(16) signify the Euclidean norm of the bracketed vector, while 6 (J)
represents an upper bound on the largest cigenvalue of the inertia tensor, J. These equations require the
induced norm of the matrices K, and K, to be large enough such that the commanded forque specified
by the vector u will deliver, at a minimum, the angular acceleration specified by the vector v.

The 3x3matrix K, and the vector function n appearing in Eq. (9) arc designed to simultancously
compensate for known torque implementat ion errors duc to the usc of discrete thruster firings, and
unknown or uncompensated dynamical effects; the requircments they must satisfy arc described in
further detail below. The scalar parameter ¢ ultimately determinces the control accuracy that can be
achieved, and will also be discussed subsequently.

The third and final term appearing in Eq.(9) is the vector function c, containing modcl
compensation and fecdforward terms that may be used to improve performance and efficiency in some

scenarios. The most comprehensive expression that can be employed here is as follows:

- N
s OxIGIIB Y,
i=1 J

con .
L0 436, (17)

3
-1
The first three terms of Eq. (17) arc designed to cancel the gyroscopic and mass expulsion terms in the
spacecrafl dynamics that appear in Eq. (1). The fourth and final term represents an input torque profile
to aid in tracking a commanded rate profile, if onc is desired, and its associated attitude profile. For
precision tracking applications, employing all of the terms shown in Eq. (17) is not always necessary;

usually only the gyroscopic term and the input torque profile arc needed.
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Pulsr-Mode Controller Dynamics

Most spacecraft equipped with propulsive attitude control systems can apply a small number
(perhaps one to three) of discrete torque levels to designated body axes through different combinations
of thruster firings. The thruster firing logic employed herein is to select athruster combination at each
command interval that delivers the torque vector most closely matching the commanded torque, m,,
given by Eq. (9). Equation (9) is structured such that straightforward application of this firing logic
yields satisfactory performance. The actual torque applied to the vehicle at any instant therefore differs

from the commanded value. The applied torque vector, m, is writtcn as

m=m_+Am-+dm (18)

InEq. (18), the vector Arnis equal to the difference between the command torque, m_, and the ncarest
torque value that can nominally bc obtained, while the vector dm represents torque implementation
errors duc to thrust level variations, thruster misalignment, calibration errors, etc. Further
characterization of&n requires specific knowledge of thruster specifications and their configuration,

Substituting Eq. (18) into Eq. (1) and making usc of Egs. (9), (13), (14), and (17) yields the

following equation of motion for the closed-loop system:

Ae = JHKAD - K Aw + K n[(1/0) kA - kA0 +8v)]+h } (19)

where

N 3
h=c-wxlo-Jo-Y m, jl;mj» Jar + Am 4+ dm 4 du (20)
i=1 i=1

InEq. (19), the arguments of K_arenoionger shown for simplicity. The vectors duand v in Egs. ( 19)

and (20) represent erroneous commands induced by attitude and rate sensing errors, and arc given by
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du = K, 00 - K, dw (21)

ov = k,0Q -k, bw (22)

in Egs. (21) and (22), 8@ and dw represent attitude and rate estimation errors, respectively.
The properties required of the matrix K, and the vector function n of Eq. (9) will now be addressed

The matrix K, is symmetric and positive definite; it must also satisfy the following constraint:

K n/o(d) > kn] (23)

Where

ke > thi/o(J) (24)

The function k. appearing in Eqs. (23) and (24) is designed to ensure that the commanded angular
accclerat ion duc to the term J'K n in Eq. (19) will be larger than any unmodeled disturbances and
uncompensated angular accelerations represented by J'h, In Egs. (23) and (24), o(J)and (J)

represent upper and lower bounds on the cigenvalues of the inertia tensor, J, respectively. If needed, &,
can be specified in terms of model parameters such as j,d&,(be,ctc., to track dynamical variations in

J']h with the physical countcrparts of these parameters, or k. can be a constant representing a global

bound. Note that for a model-indcpendent controller, in which the function ¢ from Eq. ( 17) is set to zero,
the vector h of Eq. (20) will be larger than it would if model compensation was employed, imposing a
greater requirement on k.. The function n can be any function with the following properties:

@  Ivin(,v) = In(c,v)iv
@y In(e,v)| > 1-divl;  lvi>ec

(25)




Stability Analysis

The stability of the system defined by Fgs. (19) through (22) will be evaluated using l.yapunov
theory.'*? A Lyapunov function candidate is sought which shows that within the domain of A® and
Aw all possible trajectorics arc globally, uniformly, exponentially convergent to within a small region
of radius b around the origin (A® = O, Aw = O). Designating the vector x = [A® Aw]’, the system is said
to be exponentially convergent with rate a to the desired vicinity around the origin if, for some positive

constant B, the following inequality is satisfied:

Ix@Of < b1 BIx@)lexp[-a(t-1)]; (>4, (26)

The proposed 1yapunov function candidate, designated V(x), is

k1 -kl
k0 kL

Ad

V(x) = Yix"Px = B[ADT Aw’] A
[(}]

(27)

Asshown in Eq. (27), the matrix P is composed of four 3x 3 submatrices (1 is the identity matrix). The
parameters &, and k;, arc defined in Eqs. (15) and (1 6), respectively; &, will subsequently be determined
such that the required stability criteria are satisfied. For the system to behave according to Eq. (26), V(x)

must satisfy the following conditions, as shown by Corless:"

(i) e IxI? < v(X) <elxi?; ¢, ¢,>0
(28)
G V(x) <-2a[V(x) - V*]; V(x)>V"

Equation (28) represents a set of sufficient, not necessary, conditions. If a Lyapunov function satisfying
these conditionsis not found, or if for some V(x) Eq. (2.8) is violated for a specific value of X, this dots

not necessarily imply that the origin of the system isunstable.
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To satisfy condition (') of Eq. (28), thematrix 1’ of Eq. (27) must be positive definite, This requires
that k, and &, arc> O, and that &, £, - kf,' > 0. To check condition (ii) of Eq. (28), the derivative of V(x)

isnceded; this is obtained using Eqs. (27) and (19):

V =k AQAQ + Kk AQ 4 (kpAwT - b, ADTYI K, AD - K,Aw+K n[(1/)9]+h} (29)
Using Egs. (15),(16), and (23), and noling that A®’Aw = Aw’Ad = - ApA¢, Eq. (29) can be shown
to satisfy the following inequality:

V< ~kIAQ+ (k- k) IAGI + (k, - 2k, k) A@Ag - vI {k n[(1/€)¥]+JTh}  (30)

inEq. (30), V" = [k,A®" + k,Aw’]. By comparing terms in Eqs. (27) and (30), the following formulas

for K],, k,,, and k, arc obtained that can fulfill both conditions of Eq. (28):

k, - kp 20 -«
- 20 31)
-k, Kk, o1

Substitution of Eq.(31) into Eq. (30) and noting that v = ¥ - dv leads to the following relationship

betweenV and V:

V(x) < -2a[V(x) - ()/2a)] (32)

where

E-- (@ -8v) {kn[(1/e)¥] + I 'h} (33)

By establishing an upper bound on the parameter /¢ of kq. (33), condition (ii) of Eq. (28) is satisfied

by choosing V * = FE/2«, where I is the indicated upper bound, Equation (33) can be further

I3




characterized using the requirements on the function n given in Eq. (25). Using condition (i) of Eq. (25),

further manipulation of Eq.(33) yields the following expression:

Ko< 190[1h/0Q3) -k Anl]+ 18vi{Ihl/0(J) + k Inj] (34)

By examining the behavior of the quantities appearing in Eq. (34) for a specific vehicle and application,
a suitable value of ¥ can be established, Condition (ii) of Eq. (25) implies that progressively smaller
values of ¢, an argument of the function n, result in correspondingly smaller limits son the magnitude
of the first bracketed term of ¥ in Eq. (34). Given the size of the bounding function &, established in Eq.
(24), the magnitude of this term approaches zero in the limit as ¢ approaches zero. As would bc
expected, adecrease in ¢ implies an increasc in thruster activity. The practical consequence is a trade
between control accuracy and propellant consumption, which is governed by the number and frequency
of thruster firings, The second term in Eq. (34) provides an intuitive result, showing that attitude and
rale sensing errors, which manifest themselves in dv, impose a fundamental limit on the smallest value
of £ than can actually bc achicved, independent of the value of ¢ selected.

As shown by Corless,” al.yapunov function mecting the stated requirements ensures exponential
convergence of the state, X, to within a neighborhood around the origin defined by V(x) <V~ (recall that

V” = E/2a). Using Egs. (27) and (31), the following expression is obtained for this region:

404 AQ? + 202 AQ” 1+ 4P Ap AP < I (35)

Once the state has entered the domain specified by Eq. (35), it will remain there indefinitely. Thus, Iq.
(35) can be used to portray the limit cycle envelope of the controller graphically, in a manner similar to
phase-plane analysis, Although A, as defined in Eq. (11), is positive for computational purposes duc
to the convention chosen for the Euler rotation axis in Eq. (12), negative values of A¢g arc meaningful

in this context. A more detailed development of Egs. (29) through (35) isgiven by Thurman.?*
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DIGITAL AUTOPILOT DESIGN

‘I’ he pulse-mode control theory, as presented above, implicitly assumes that the parameters nceded
to compute torque commands arc continuously available, and that those commands arc continuously
executed without any computational or mechanical delays. However, the theory is applicable to sampled
data systems with proper interpretation This section describes the primary considerations in the design
of a spacecraft autopilot for digital computer implementation.

Design Parameters
In a sampled data system, the command torque expression of Eq. (9) is evaluated at discrete

intervals. Using Eqgs. (9), (13), (14), and (17), the following expression is obtained:

m (1) = K,AD, - K, A®, + K n[(1/c) kA, -k, A0 )] + ¢, (36)

Inkq. (36) the subscript kimplics the value of the indicated quantity at time #,. A useful form for the

function n satisfying the conditions of Eq. (25) that mimics the behavior of the thrusters is as follows:

n(c,v) = 0; 9] <c
(37)
n(e, V) = ¥/v]; Iv[>¢€

‘I"he key design parameters to be chosen arc the rate of convergence, cc, which determines the val ues of
the feedback gains &, and &;, given in Eq. (31), the parameter ¢, which sets the thruster firing dcadband
in Eq. (37), and the interval between command updates, designated 7° When designing a modcl-
indcpendent autopilot for a spacecraft that can apply only a single torque level to each axis, a simpler
version of Eq. (36) can bc used, by eliminating the first, second, and fourth terms. These terms must
then be treated as part of the vector h of Eq. (20), along with all other uncompensated or unmodeled
dynamical terms. As long the matrix K_ in Eq. (36) satisfies Fqs. (23) and (24), the exponential stability

criteria of Eq. (28) will hold, with m (z;) being determined solely by the third term of Eq. (36).
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Thruster valve characteristics limit the smallest pulse width for which reliable operation is assured.

This effectively sets the smallest usable value of 7, and limits control precision to levels commensurate
with the angular position and rate changes induced by minimum impulsc thruster firings. For sample-
and-hold systems, the same logic till appliesif avalue of 7' larger than the minimum pulsc width is
chosen, in that the attitude and rate changes duc to athruster pulse of 7' seconds limits the achievable
precision, In onc sense a minimum pulse width is beneficial, as it incorporates hysteresis into the digital
controller that prevents “chattering” of the thruster salves. For valucs of 7' that arc small relative to the

frequency range of the spacecraft dynamics, the following expressions arc useful:

IA@ lnin = [m [0(I)] 7

_ (38)
| A(p ‘min z (’I’/?) ' A(p (min

in Eq.(38), mrepresents the torque capability of the spacecraft; o (J ) has the same meaning as in Eq.
(24) Equation (38) provides approximate upper bounds on the minimum values of A¢g and Ag that can
be achieved for agiven 7, independent of other error sources, such as high frequency attitude sensor
noise., that can also influence the choice of ¢. The boundsin Eq. (38) provide a guideline for the smallest

value of ¢ that will ensure a sufficiently large thruster firing dcadband:

€> k}’l A(p | + kD l A(‘p Imin (39)

min

In addition to sampling rate considerations, time delays between the sampling of attitude sensors and
the implementation of thruster firing commands must be considered. This error source can be interpreted
as amodecling error in Egs. (18) and (20); its effect will be addressed further below.
Performance Specifications

In the transient phase of operation, a pulse-nmdc controller based on Eqs. (36) and (37) attempts

to force the closed-loop attitude dynamics to approximate the following lincar differential equation:
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Ag+hy Ap+kBg = O (w)

Overall, Eq. (4 O) gives the most accurate approximate ion of the transient behavior in rest-to-rest slew
maneuvers, in which the angular velocity vector of the spacecraft would ideally bc parallel with the
Euler rotation axis over the course of the maneuver. As with Eq. (35), the usc of Eq. (40) as an
analytical tool admits negative values of the attitude error angle Ag@. The values of 4, and k,, given in
Eq.(31) in terms of the convergence rate « yield the following damping ratio, ¢, and natural frequency,

/.., of the Closed-loop system:

¢= 0.707

41
f= (12n)e 4

For the indicated damping ratio, the natural frequency of the system is also equal to its-3dB bandwidth;
hence, the bandwidth isimmediately determined by the value of « selected.

Oncc the spacecraft’s attitude state has entered the region specified by Eq. (35), it will exhibit some
type of limit cycle behavior therecafter, with the envelope of this region established by the parameter I
of Egs. (33) and (34). For slew maneuvers in which the terminal valuc of the commanded angular

velocity, w,., is zero, the following upper bound on % can bc used:

E = (e +E)(e +dv) 42)

Equation (42) incorporates approximate upper bounds, immediately prior to a thruster firing, on the
vector ¥ of Eq. (14), the modeling error vector h of Eq. (20), and the erroneous angular w.coloration
commands of Eq. (22), designated dv. The parameter< bounds thrust implementation errors in Eq. (20)
duc to the interval between command computations (7) and any time delays present in the system; in
most modern spacecrafl control systems, £ is small compared with the other parameters in Fq. (427?).
Using }iq. (42), an accurate estimate of the limit cycle regime can be obtained from Eq. (35).
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MIDCOURSE GUIDANCE COMPUTER SIMULATION

This section describes the simulation of a digital autopilot for midcourse guidance of an
interplanetary spacecraft. in this scenario, a hypothetical soft lander approaching the planet Mars
performs a late propulsive maneuver to remove residual targeting errors about 30 min prior to
atmospheric entry, descent, and landing. The vehicle is similar to the Mars Pathfinder spacecraft,”
which in actual operation executes maneuvers via ground-based commands, rather than onboard control.
Spacecraft Description

The spacecraft configuration during interplanetary flight is shown in Fig.2. Specific configuration
data arc provided in Table 1. The lander is carried to Mars inside an entry vehicle attached to a cruise
stage, The cruise stage is equipped with sun sensors and a star tracker for attitude determination, eight
thrusters for attitude control and midcourse propulsion, and a solar array for power generation. It should
benoted that the plane containing the roll thrusters is offset from the spacecraft’s center of mass about
10 cm The thruster configuration, while efficient, provides the capability for coupled torques only about
the roll axis; pitch and yaw thruster firings yield both torques and trandational velocity changes. The
lander carries a strapdown Inertial Measurcment Unit (IMU) which is used to perform inertial
navigation during midcourse maneuvers and the terminal descent phase.

A high-level block diagram of the spacecraft’s midcourse guidance system is shown in Fig. 3. The
key parameters of the digital autopilot arc given in Table 2. A velocity-to-bc-gained method is used for
guidance,” in which the spacecrafi maneuvers itself to null the velocity-to-bc-gained vector,
represent ing the difference between the velocity required to achieve the proper atmospheric entry
conditions and the velocity indicated by the inertia navigation system. At each command interval (the
subsct ipt & in Fig. 3 signifies the value of the indicated parameter at time ¢,), the guidance law supplies
the autopilot with the velocity-to-bc-gained and a commanded attitude quaternion that will align the

thrust axis (the x axisin Fig. 3) with the velocity-to-bc-gained vector, Thesc quantities, along with

18




estimates of the current attitude quaternion and angular velocity vector obtained from the navigation
system, arc used to determine the command torque vector.

The autopilot employs a simple model-indcpendent pulse-mocic controller. The commanded torque
is computed using the third term of Eq. (36) and Eq. (37), as described previously; this computation is
asoillustrated in Fig. 3. The matrix K, of Lq. (36) is diagonal, with the values on the diagonal being
the nominal torque generated about the x, y, and z spacecraft body axes, respectively, by the appropriate
thruster firings These values are labeled m,, my, and 7 in Table 2. At each command interval, the
autopilot issues commands to the thruster valves only when a change in the state of a given thruster is
needed When the guidance system senses that the spacecrafl is within the limit cycle envelope of Eq.
(35), the thrusters arc used to carry out velocity changes. During these periods, certain thrusters may
be turned off momentarily, when torque commands for attitude maintenance arc issued.

The thruster characteristics given in ~' able 1arc represent ative of modern bipropellant engines for
small spat..ccrail propulsioi.Engincs of this type, Using nitrogen tetroxide and monomethyl hydrazinc,
deliver a specific impulse of 300 to 320 s. The error mode] used to represent the inertial navigation
system is summarized in Table 3. The | MU contains threc ring-laser gyroscopes and three pendulous
accelerometers; its performance is represent ative of the strapdown 1 MUS carried by the Clementine
spacocrafl ”” The error model components in Table 3 arc based on established modeling techniques for
these instruments.” The navigation system is initialized with ground-based estimates of the spacecraft’s
position and velocity vectors relative to Mars;® the initial attitude quaternion is established by an
alignment process performed onboard the spacecrafl using its att itude sensors. The bias errors of the
gyroscopes and accelerometers arc also calibrated during the alignment process.

Mission Scenario
The scquence of events for the maneuver isillustrated in Fig. 4. Alignment and initialization of the

inertial navigation system is done with the spacecrafl three-axis stabilized in its nominal entry attitude.
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Afterreceipt of an enable command from the ground, the autopilot slews the spacecraft to align its

thrust (+x) axis with the indicated vc]ocity-to-bc-gained vector. Since the spacecraft’s pitch and yaw
thrusters arc unbalanced, the commanded attitude changes slightly (afcw degrees) during this slew
maneuver, due to the change in the velocity-to-bc-gained resulting from velocity changes induced by
unbalanced thruster firings, Once the guidance system senses that the spacecraft has entered the limit
cycle envelope about the commanded attitude, the autopilot uses the pitch and yaw thrusters to perform
the commanded velocity change and to hold the spacecraft in the correct burn attitude simultaneously.
Before the initiation of this burn, the velocity-to-be-gained vector computed by the guidance law is
intentionally biased so that after the spacecraft returns to its initial attitude a small residual value
remains, with a direction that will always have components which can be nulled by a combination of
pitch/yaw and roll thruster firings,

Afler the primary burn is completed, the autopilot reorients the spacecraft back to its initial attitude.
During this reorientation maneuver, the spacecraft’s roll angle is adjusted so that the residua velocity-
to-bc-gained vector liesin the plane containing the thrust axes of the roll and yaw thrusters. Finally, the
autopilot performs a small trim bum while maintaining the spacecraft in itsinitial attitude, which nulls
the residua velocity-to-be-gained induced by the velocity change of the reorientation maneuver and the
bias applied to the primary burn. When firing the roll thrusters to execute velocity changes, the autopilot
uses the pitch thrusters to maintain the spacecraft’s attitude against the resulting disturbance torques.
With this procodure, the autopilot can perform a midcourse maneuver very accurately, without the need
for open-loop compensation of the velocity changes caused by using unbalanced thruster firings for
attitude control.

Digital Simulation
The dynamics of the spacecraft were simulated by numerical integration of the six-degree-of-

frecdom equations of motion, treating the vehicle as arigid body with variable mass and moments of
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incriia. No external disturbances, such as solar radiation pressure-induecd torques, were modeled, due
to their negligible size compared with the disturbances induced by propulsion system operation and
center of mass offsets. Integration was accomplished using a 70" order Runge-Kutta formula with g ™
order step size control, with al computations done in double precision arithm\clic. The nominal
integration t imc step was 20 ms, while the toler ance used to trigger time step adjustments was set to onc
part in 1010. The initial mass and inertia tensor were generated using a pseudo-random number
generator, according to Gaussian distributions with the statistics specified in Table'l. Center of mass
modeling and calibration errors were also simulated in a similar manner, with the center of mass offset
statistics of Table 1 applying to both they and z axes of the spacecrafl.

Thrust level variations between successive thruster firings were simulated by pseudo-random
Gaussian number generation for each individua thruster, again using the statistics given in Table 1,
Navigation errors were simulated by numerical integration of the appropriate error equations (the
interested reader isrefcrred to the text by Britting™® for aderivation of strapdown inertial navigation
crror egquations), using pseudo-random number generation to sample the statistics of the error sources
described in Table 3. Duc to the relatively slow variation of the navigational errors, these parameters
were integrated in double precision arithmetic using a 4* order, fixed step Runge-Kut ta formula with
astep size of 20 ms, The time delays associated with thruster valve operat ion and computer operat ion
were also simulated, using the values given in Tables 1 and 2. The computational time delay, designated
67'in Table 2, was based on an approximate count of the number of operations during each command
cycle. An average value of the time needed to perform these operations on several modern space-
qualificd microprocessors was then determined
Results

The attitude and velocity-to-bc-gained history of a ssmulated maneuver arc shown in Figs. 5 and

6, respectively. ‘t'his case represents arelatively difficult scenario: the spacecraft must rapidly slew
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amost 180 deg, execute a velocity change of 7.2 m/s to correct a 13 km targeting error, then return to

its initial attitude. For illustrative purposes, the attitude of the spat.cmaft is characterized in Fig. 5 by
three Euler angles; these are heading (¥), pitch (0) and roll (¢). The order of rotation for the body axes
of Fig. 2 from the Mars-centered coordinate frame used by the navigation system to the current attitude
isa rotation of angle { about the yaw (4 z) axis, followed by a rotation of angle 8 about the pitch (+y)
axis, then arotation of angle ¢ about the roll (+x) axis, The values of these angles corresponding to the
commanded attitude, designated ¢, 0., and ., respectively, arc also shown in Fig, 5.

‘I-hc actual components of the velocity-to-bc-gained vector and those computed by the navigation
system arc shown in Fig, 6. The components of these vectors arc specified in a Mars-centered,
nonr otating, mean equator of epoch 2000.0 coordinate system. In thissystem, the x and y axes arc
parallel to the Martian equatorial plane, while the z axisis normal to this plane and parallel to the mean
spin axis of Mars at the indicated epoch, The flight path followed by the spacecraft during the period
of interest is such that its velocity vector is nearly aligned with they-z plane, pointing in roughly the -y
direction, but inclined at an angle of about 20 deg below the equatoria (x-y) plane, Differences between
the actual and indicated vckwity-to-bc-gained components seen in Fig. 6 arc duc to errors in both the
position and velocity vectors computed by the navigation system.

The rall, pitch, and yaw thruster firings during the first ten seconds of the maneuver arc shown in
Fig. 7. Note that though the autopilot computes commands at a SO-HZ rate, the highest pulse frequency
seen in Fig. 7 is only about 7 Hz for the yaw thrusters, and 1 to 4 Hz for the pitch and roll thrusters, In
comparison, the lowest vibrational frequency of the spacecraft structure is approximately 20 Hz. As
suggested by Eqgs. (40) and (41), the autopilot is attempting to approximate a specified linear system
by varying the frequency and width of the thruster pulses to approximate, in an average sense, a
proportional-phrs-derivative commanded torque profile. This behavior is similar to that of the integral

pulse-frequeney controller of Farrenkopf et al.? The additional advantage possessed by the autopilot of
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Fig. 4 isthat with pulse-width and pulse-frequency modulation, the number of thruster valve cycles

during the slew maneuvers is reduced.

According to Fig. 5, the initial turn takes about 67 s to complete, In comparison, an analytical
prediction of the time required to reach the commanded attitude, based on Egs. (26), (35}, and (42), was
68 s. The primary bum takes about 190s to complete, employing all four pitch and y\aw thrusters. The
attitude history of the reorientation maneuver following the primary burn shows that the commanded
roll angle ¢, changes rapidly during the first 20 seconds, The autopilot follows this' change, although
reoricntation takes about 80s as opposed to 67s for the initial turn. Even though the commanded torque
formula contains no feedforward term (@ ), the autopilot is still able to track the commanded attitude,
without the need for gain scheduling, The two slew maneuvers and the trim burn generate velocity
changes with a combined magnitude of about 0.5 m/s, This represents an overhead of 7°/0 in propellant
consumption compared with the net 7.2 m/s velocity change of the maneuver. If needed, this overhead
could be reduced by doing the slew maneuvers more slowly.

The thruster firing deadband used to establish the cutoff point for velocity changes, designated y
in Table 2, is 2% of the commanded velocity change. This cutoff condition is applied to both the
primary bum and the trim burn, Residual velocity-to-be-gained components remaining after the trim

burn arc less than 4 rinds; this corresponds to a precision of about 0.05% in executing the maneuver.

The overall maneuver execution error is about 10%, due entirely to the effect of navigational errors.
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Table 1. Spacecraft Configuration Data

¢

Nominal RMS (10)
Parameter _ Value Variation
Initial Mass
spacecraft (dry), kg 420.0 0.5%
propellant/oxidizer, kg 30.0 2.0%
Initial Moments of Inertia

yaw (z-axis), kg-m’ 120.0 2.0740
pitch (y-axis), kg-m’ 115.0 2.0%
roll (x-axis), kg-m’ 145.0 2.0%

cross-products, kg-m? <3.0 —
Center of Mass Offset, cm 0.0 1.0

Thruster Specifications

thrust level, N 4.45 3.0%

min pulse width, ms 20 -

rise time, ms 2.0 -

decay time, ms 3.0 —

valve open) close delay, ms 3.0 —
max acceleration, m/s’ 0.04 2.5%
max pitch/yaw acceleration, rad/s’ 0.038 3.6%
max roll acceleration, rad/s’ 0.067 2.9%




Table 2: Digital Autopilot Parameters

Parameter Description Value
T command update interval 20 ms
5T computation time required for 3 ms

each command update
Y guidance thruster firing deadband 2% of AV
Attitude Control

a attitude error rate of convergence 0.0765 s-
m, roll axis torque level 9.8 N-m
my pitch axis torque level 4.45 N-m
m, yaw axis torque level 4.45 N-m
kp angular rate feedback gain 0.153 s-’
Ko angular position feedback gain 0.0117 S-°
k, Lyapunov function parameter 1.8 « 1(21'3 3
c attitude thruster firing deadband 2x10"s?




Table 3: Inertial Navigation System Error Model

Parameter RMS (10) Value Units,
0.18 (x)
Initial Position Error 4.00 (y) km
5.26 2
0.06 (x)
Initial Velocity Error 0.24 (y) m/s
0.01 (2)
Initial Attitude Error 0.1 (each axis) deg
IMU Misalignment 18 arcsec
Gyro Error Mod_el
turn-on bias repeatability 1.0 deg/hr
bias calibration error 0.10 deg/hr
time-varying bias” 0.05 deg/hr
scale factor error 100 ppm
time-varying scale factor’ 25 ppm
scale factor asymmetry. 10 ppm
time-varying asymmetry 10 ppm
random walk 0.10 deg/hr*
Accelerometer Error Model
turn-on bias repeatability 500 ug
bias calibration error 50 Hg
scale factor error 100 ppm
scale factor asymmetry 25 ppm
compliance (9) 1.0 Hg/g’
white noise 1.0 mm/s

“modeled as first-order Gauss-Markov processes wtth time constants of 1 hr
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